国产免费视频,中文字幕精品久久久久人妻,久久精品a一国产成人免费网站,成年性生交大片免费看,国产精品美女久久久久久,久久人人爽人人爽人人片av高清,影音先锋人妻每日资源站,精品人妻无码一区二区三区蜜桃一

高中數學知識點總結

時間:2025-05-20 07:14:23 知識點總結 我要投稿

高中數學知識點總結【必備15篇】

  總結在一個時期、一個年度、一個階段對學習和工作生活等情況加以回顧和分析的一種書面材料,通過它可以全面地、系統地了解以往的學習和工作情況,讓我們抽出時間寫寫總結吧。但是卻發現不知道該寫些什么,下面是小編為大家整理的高中數學知識點總結,歡迎閱讀,希望大家能夠喜歡。

高中數學知識點總結【必備15篇】

高中數學知識點總結1

  1、命題的四種形式及其相互關系是什么?

  (互為逆否關系的命題是等價命題。)

  原命題與逆否命題同真、同假;逆命題與否命題同真同假。

  2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?

  (一對一,多對一,允許B中有元素無原象。)

  3、函數的三要素是什么?如何比較兩個函數是否相同?

  (定義域、對應法則、值域)

  4、反函數存在的條件是什么?

  (一一對應函數)

  求反函數的步驟掌握了嗎?

  (①反解x;②互換x、y;③注明定義域)

  5、反函數的性質有哪些?

  ①互為反函數的`圖象關于直線y=x對稱;

  ②保存了原來函數的單調性、奇函數性;

  6、函數f(x)具有奇偶性的必要(非充分)條件是什么?

  (f(x)定義域關于原點對稱)

高中數學知識點總結2

  1.求函數的單調性

  利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數.

  利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間.

  反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,

  (1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);

  (2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的x值不構成區間);

  (3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立.

  2.求函數的極值:

  設函數yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數f(x)的極小值(或極大值).

  可導函數的極值,可通過研究函數的單調性求得,基本步驟是:

  (1)確定函數f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,并列表:x變化時,f(x)和f(x)值的變化情況:

  (4)檢查f(x)的符號并由表格判斷極值.

  3.求函數的'值與最小值:

  如果函數f(x)在定義域I內存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數在定義域上的值.函數在定義域內的極值不一定,但在定義域內的最值是的

  求函數f(x)在區間[a,b]上的值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;

  (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的值與最小值.

  4.解決不等式的有關問題:

  (1)不等式恒成立問題(絕對不等式問題)可考慮值域.

  f(x)(xA)的值域是[a,b]時,

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0.

  f(x)(xA)的值域是(a,b)時,

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0.

  (2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函數f(x)的單調性,轉化為證明f(x)f(x0)0.

  5.導數在實際生活中的應用:

  實際生活求解(小)值問題,通常都可轉化為函數的最值.在利用導數來求函數最值時,一定要注意,極值點的單峰函數,極值點就是最值點,在解題時要加以說明.

高中數學知識點總結3

  :平面

  1.經過不在同一條直線上的三點確定一個面.

  注:兩兩相交且不過同一點的四條直線必在同一平面內.

  2.兩個平面可將平面分成3或4部分.(①兩個平面平行,②兩個平面相交)

  3.過三條互相平行的直線可以確定1或3個平面.(①三條直線在一個平面內平行,②三條直線不在一個平面內平行)

  [注]:三條直線可以確定三個平面,三條直線的公共點有0或1個.

  4.三個平面最多可把空間分成8部分.(X、Y、Z三個方向)

  :空間的直線與平面

  ⒈平面的基本性質⑴三個公理及公理三的三個推論和它們的用途. ⑵斜二測畫法.

  ⒉空間兩條直線的位置關系:相交直線、平行直線、異面直線.

  ⑴公理四(平行線的傳遞性).等角定理.

  ⑵異面直線的判定:判定定理、反證法.

  ⑶異面直線所成的角:定義(求法)、范圍.

  ⒊直線和平面平行直線和平面的位置關系、直線和平面平行的判定與性質.

  ⒋直線和平面垂直

  ⑴直線和平面垂直:定義、判定定理.

  ⑵三垂線定理及逆定理.

  5.平面和平面平行

  兩個平面的位置關系、兩個平面平行的判定與性質.

  6.平面和平面垂直

  互相垂直的平面及其判定定理、性質定理.

  (二)直線與平面的平行和垂直的證明思路(見附圖)

  (三)夾角與距離

  7.直線和平面所成的角與二面角

  ⑴平面的斜線和平面所成的角:三面角余弦公式、最小角定理、斜線和平

  面所成的角、直線和平面所成的角.

  ⑵二面角:①定義、范圍、二面角的平面角、直二面角.

  ②互相垂直的平面及其判定定理、性質定理.

  8.距離

  ⑴點到平面的.距離.

  ⑵直線到與它平行平面的距離.

  ⑶兩個平行平面的距離:兩個平行平面的公垂線、公垂線段.

  ⑷異面直線的距離:異面直線的公垂線及其性質、公垂線段.

  (四)簡單多面體與球

  9.棱柱與棱錐

  ⑴多面體.

  ⑵棱柱與它的性質:棱柱、直棱柱、正棱柱、棱柱的性質.

  ⑶平行六面體與長方體:平行六面體、直平行六面體、長方體、正四棱柱、

  正方體;平行六面體的性質、長方體的性質.

  ⑷棱錐與它的性質:棱錐、正棱錐、棱錐的性質、正棱錐的性質.

  ⑸直棱柱和正棱錐的直觀圖的畫法.

  10.多面體歐拉定理的發現

  ⑴簡單多面體的歐拉公式.

  ⑵正多面體.

  11.球

  ⑴球和它的性質:球體、球面、球的大圓、小圓、球面距離.

  ⑵球的體積公式和表面積公式.

  :常用結論、方法和公式

  1.異面直線所成角的求法:

  (1)平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;

  (2)補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發現兩條異面直線間的關系;

  2.直線與平面所成的角

  斜線和平面所成的是一個直角三角形的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面上的射影。通常通過斜線上某個特殊點作出平面的垂線段,垂足和斜足的連線,是產生線面角的關鍵;

  3.二面角的求法

  (1)定義法:直接在二面角的棱上取一點(特殊點),分別在兩個半平面內作棱的垂線,得出平面角,用定義法時,要認真觀察圖形的特性;

  (2)三垂線法:已知二面角其中一個面內一點到一個面的垂線,用三垂線定理或逆定理作出二面角的平面角;

  (3)垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個半平面的交線所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;

  (4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫出平面角;

  特別:對于一類沒有給出棱的二面角,應先延伸兩個半平面,使之相交出現棱,然后再選用上述方法(尤其要考慮射影法)。

  4.空間距離的求法

  (1)兩異面直線間的距離,高考要求是給出公垂線,所以一般先利用垂直作出公垂線,然后再進行計算;

  (2)求點到直線的距離,一般用三垂線定理作出垂線再求解;

  (3)求點到平面的距離,一是用垂面法,借助面面垂直的性質來作,因此,確定已知面的垂面是關鍵;二是不作出公垂線,轉化為求三棱錐的高,利用等體積法列方程求解;

高中數學知識點總結4

  空間中的垂直問題

  (1)線線、面面、線面垂直的定義

  ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

  ②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。

  ③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的.圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

  (2)垂直關系的判定和性質定理

  ①線面垂直判定定理和性質定理

  判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面。

  性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

  ②面面垂直的判定定理和性質定理

  判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直。

  性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面。

  棱錐

  棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的性質:

  (1)側棱交于一點。側面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質:

  (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (2)多個特殊的直角三角形

  esp:

  a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

高中數學知識點總結5

  數學知識點1

  柱、錐、臺、球的結構特征

  (1)棱柱:

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到

  截面距離與高的比的平方。

  (3)棱臺:

  幾何特征:

  ①上下底面是相似的`平行多邊形

  ②側面是梯形

  ③側棱交于原棱錐的頂點

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成

  幾何特征:

  ①底面是全等的圓;

  ②母線與軸平行;

  ③軸與底面圓的半徑垂直;

  ④側面展開圖

  是一個矩形。

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

  幾何特征:

  ①底面是一個圓;

  ②母線交于圓錐的頂點;

  ③側面展開圖是一個扇形。

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

  幾何特征:

  ①上下底面是兩個圓;

  ②側面母線交于原圓錐的頂點;

  ③側面展開圖是一個弓形。

  (7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

  幾何特征:

  ①球的截面是圓;

  ②球面上任意一點到球心的距離等于半徑。

  數學知識點2

  空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、 俯視圖(從上向下)

  注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。

  數學知識點3

  空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:

  ①原來與x軸平行的線段仍然與x平行且長度不變;

  ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

高中數學知識點總結6

  導數及其應用

  一.導數概念的引入

  數學選修2-2知識點總結

  1.導數的物理意義:瞬時速率。一般的,函數yf(x)在xx0處的瞬時變化率是

  limf(x0x)f(x0)x,

  x0我們稱它為函數yf(x)在xx0處的導數,記作f(x0)或y|xx,即

  0f(x0)=limf(x0x)f(x0)xx0

  例1.在高臺跳水運動中,運動員相對于水面的高度h(單位:m)與起跳后的時間t(單位:

  s)存在函數關系

  h(t)4.9t6.5t10

  2運動員在t=2s時的瞬時速度是多少?解:根據定義

  vh(2)limh(2x)h(2)xx013.1

  即該運動員在t=2s是13.1m/s,符號說明方向向下

  2.導數的幾何意義:曲線的切線.通過圖像,我們可以看出當點Pn趨近于P時,直線PT與

  曲線相切。容易知道,割線PPn的斜率是knf(xn)f(x0)xnx0,當點Pn趨近于P時,函

  數yf(x)在xx0處的導數就是切線PT的斜率k,即

  klimf(xn)f(x0)xnx0f(x0)

  x03.導函數:當x變化時,f(x)便是x的一個函數,我們稱它為f(x)的導函數.yf(x)的導函數有時也記作y,即

  f(x)limf(xx)f(x)xx0

  二.導數的計算

  1.函數yf(x)c的導數2.函數yf(x)x的導數3.函數yf(x)x的導數

  4.函數yf(x)1x的導數

  基本初等函數的導數公式:

  1若f(x)c(c為常數),則f(x)0;2若f(x)x,則f(x)x1;3若f(x)sinx,則f(x)cosx4若f(x)cosx,則f(x)sinx;5若f(x)ax,則f(x)axlna6若f(x)ex,則f(x)ex

  x7若f(x)loga,則f(x)1xlna1x

  8若f(x)lnx,則f(x)導數的運算法則

  1.[f(x)g(x)]f(x)g(x)

  2.[f(x)g(x)]f(x)g(x)f(x)g(x)

  f(x)g(x)f(x)g(x)f(x)g(x)[g(x)]23.[]

  復合函數求導

  yf(u)和ug(x),稱則y可以表示成為x的函數,即yf(g(x))為一個復合函數yf(g(x))g(x)

  三.導數在研究函數中的應用1.函數的單調性與導數:

  一般的,函數的單調性與其導數的正負有如下關系:

  在某個區間(a,b)內,如果f(x)0,那么函數yf(x)在這個區間單調遞增;如果f(x)0,那么函數yf(x)在這個區間單調遞減.2.函數的極值與導數

  極值反映的是函數在某一點附近的大小情況.求函數yf(x)的極值的方法是:

  (1)如果在x0附近的左側f(x)0,右側f(x)0,那么f(x0)是極大值;(2)如果在x0附近的左側f(x)0,右側f(x)0,那么f(x0)是極小值;4.函數的最大(小)值與導數

  函數極大值與最大值之間的關系.

  求函數yf(x)在[a,b]上的最大值與最小值的步驟(1)求函數yf(x)在(a,b)內的極值;

  (2)將函數yf(x)的各極值與端點處的函數值f(a),f(b)比較,其中最大的是一個

  最大值,最小的是最小值.

  四.生活中的優化問題

  利用導數的知識,,求函數的最大(小)值,從而解決實際問題

  第二章推理與證明

  考點一合情推理與類比推理

  根據一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理

  根據兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質的推理,叫做類比推理.

  類比推理的一般步驟:

  (1)找出兩類事物的相似性或一致性;

  (2)用一類事物的性質去推測另一類事物的`性質,得出一個明確的命題(猜想);

  (3)一般的,事物之間的各個性質并不是孤立存在的,而是相互制約的如果兩個事物在某

  些性質上相同或相似,那么他們在另一寫性質上也可能相同或類似,類比的結論可能是真的

  (4)一般情況下,如果類比的相似性越多,相似的性質與推測的性質之間越相關,那么類比

  得出的命題越可靠.

  考點二演繹推理(俗稱三段論)

  由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理.

  考點三數學歸納法

  1.它是一個遞推的數學論證方法.

  2.步驟:A.命題在n=1(或n0)時成立,這是遞推的基礎;B.假設在n=k時命題成立C.證明n=k+1時命題也成立,

  完成這兩步,就可以斷定對任何自然數(或n>=n0,且nN)結論都成立。考點三證明1.反證法:2.分析法:3.綜合法:

  第一章數系的擴充和復數的概念考點一:復數的概念

  (1)復數:形如abi(aR,bR)的數叫做復數,a和b分別叫它的實部和虛部.

  (2)分類:復數abi(aR,bR)中,當b0,就是實數;b0,叫做虛數;當a0,b0時,

  叫做純虛數.

  (3)復數相等:如果兩個復數實部相等且虛部相等就說這兩個復數相等.

  (4)共軛復數:當兩個復數實部相等,虛部互為相反數時,這兩個復數互為共軛復數.(5)復平面:建立直角坐標系來表示復數的平面叫做復平面,x軸叫做實軸,y軸除去原點的部

  分叫做虛軸。

  (6)兩個實數可以比較大小,但兩個復數如果不全是實數就不能比較大小。

  考點二:復數的運算

  1.復數的加,減,乘,除按以下法則進行設z1abi,z2cdi(a,b,c,dR)則

  z1z2(ac)(bd)iz1z2(acbd)(adbc)i

  z1z2(acbd)(adbc)icd22(z20)

  2,幾個重要的結論

  2222(1)|z1z2||z1z2|2(|z1||z2|)

  (2)zz|z|2|z|2(3)若z為虛數,則|z|z3.運算律

  (1)zmznzmn;(2)(z)zmnmnnnn;(3)(z1z2)z1z2(m,nR)

  224.關于虛數單位i的一些固定結論:

  (1)i1(2)ii(3)i1(2)ii234nn2in3in

  擴展閱讀:高中數學文科選修1-2知識點總結

  高中數學選修1-2知識點總結

  第一章統計案例

  1.線性回歸方程①變量之間的兩類關系:函數關系與相關關系;②制作散點圖,判斷線性相關關系

  ③線性回歸方程:ybxa(最小二乘法)

  nxiyinxyi1bn2其中,2xinxi1aybx注意:線性回歸直線經過定點(x,y).

  2.相關系數(判定兩個變量線性相關性):r(xi1nix)(yiy)2

  (xi1nix)(yi1niy)2注:⑴r>0時,變量x,y正相關;r第二章框圖

  1.流程圖

  流程圖是由一些圖形符號和文字說明構成的圖示.流程圖是表述工作方式、工藝流程的一種常用手段,它的特點是直觀、清晰.3.結構圖

  一些事物之間不是先后順序關系,而是存在某種邏輯關系,像這樣的關系可以用結構圖來描述.常用的結構圖一般包括層次結構圖,分類結構圖及知識結構圖等.

  第三章推理與證明

  1.推理⑴合情推理:

  歸納推理和類比推理都是根據已有事實,經過觀察、分析、比較、聯想,在進行歸納、類比,然后提出猜想的推理,我們把它們稱為合情推理。①歸納推理

  由某類食物的部分對象具有某些特征,推出該類事物的全部對象都具有這些特征的推理,或者有個別事實概括出一般結論的推理,稱為歸納推理,簡稱歸納。歸納推理是由部分到整體,由個別到一般的推理。②類比推理

  由兩類對象具有類似和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理,稱為類比推理,簡稱類比。類比推理是特殊到特殊的推理。⑵演繹推理

  從一般的原理出發,推出某個特殊情況下的結論,這種推理叫演繹推理。演繹推理是由一般到特殊的推理。

  “三段論”是演繹推理的一般模式,包括:⑴大前提---------已知的一般結論;⑵小前提---------所研究的特殊情況;⑶結論---------根據一般原理,對特殊情況得出的判斷。

  2

  2.證明

  (1)直接證明①綜合法

  一般地,利用已知條件和某些數學定義、定理、公理等,經過一系列的推理論證,最后推導出所要證明的結論成立,這種證明方法叫做綜合法。綜合法又叫順推法或由因導果法。②分析法

  一般地,從要證明的結論出發,逐步尋求使它成立的充分條件,直至最后,把要證明的結論歸結為判定一個明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法或執果索因法。(2)間接證明……反證法

  一般地,假設原命題不成立,經過正確的推理,最后得出矛盾,因此說明假設錯誤,從而證明原命題成立,這種證明方法叫反證法。

  第四章復數

  1.復數的有關概念

  (1)把平方等于-1的數用符號i表示,規定i2=-1,把i叫作虛數單位.

  (2)形如a+bi的數叫作復數(a,b是實數,i是虛數單位).通常表示為z=a+bi(a,b∈R).(3)對于復數z=a+bi,a與b分別叫作復數z的______與______,并且分別用Rez與Imz表示.2.數集之間的關系

  復數的全體組成的集合叫作_____________,記作C.3.復數的分類

  實數(b=0)

  復數a+bi

  純虛數(a=0)(a,b∈R)虛數(b≠0)

  非純虛數(a≠0)

  4.兩個復數相等的充要條件

  設a,b,c,d都是實數,則a+bi=c+di,當且僅當_________

  3

  5.復平面

  (1)定義:當用__________________的點來表示復數時,我們稱這個直角坐標平面為復平面.(2)實軸:_______稱為實軸.虛軸:_________稱為虛軸.6.復數的模

  若z=a+bi(a,b∈R),則_______________.7.共軛復數

  (1)定義:當兩個復數的實部________,虛部互為___________時,這樣的兩個復數叫作互為共軛復數.復數z的共軛復數用______表示,即若z=a+bi,則z-=__________.2)性質:==___________.

  必背結論

  1.(1)z=a+bi∈Rb=0(a,b∈R)z=zz2≥0;(2)z=a+bi是虛數b≠0(a,b∈R);

  (3)z=a+bi是純虛數a=0且b≠0(a,b∈R)z+z=0(z≠0)z2

高中數學知識點總結7

  空間兩條直線只有三種位置關系:平行、相交、異面。

  按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法。

  兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法。

  若從有無公共點的角度看可分為兩類:

  (1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面。

  直線和平面的位置關系:

  直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行。

  ①直線在平面內——有無數個公共點

  ②直線和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:a、直線與平面垂直時,所成的角為直角;b、直線與平面平行或在平面內,所成的角為0°角。

  由此得直線和平面所成角的取值范圍為[0°,90°]。

  最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角。

  三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直。

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。

  直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

  直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。

  數學常用解題技巧有哪些

  第一,應堅持由易到難的做題順序。近年來高考數學試題的設置是8道選擇題、6道填空題、6到大題,通常稱為866結構。在實體設置的結構中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結構。基礎差的就是644,先把自己能做的、會做的拿到手。這是第一點。

  第二,審題是關鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。

  第三,屬于非智力因素導致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩定下來以后再回過頭來看會頓悟,豁然開朗。

  第四,做選擇題的時候應運用最好的`解題方法。因為選擇題和填空題都是看結果不看過程,因此在這個過程中都應不擇手段,只要是能把正確的結論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質法(音),一些出現字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結果來。再就是數形結合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質法、數形結合法三種方法都適合。做大題的時候要特別注意解題步驟,規范答題可以減少失分。簡單地說,規范答題就是從上一步的原因到下一步的結論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規范答題。

  學霸分享的數學復習技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰術,而是要通過一題聯想到很多題。

  3、錯一次反思一次

  每次業及考試或多或少會發生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現的錯誤記錄下來分析,并盡力保證在下次考試時不發生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了.

  4、分析試卷總結經驗

  每次考試結束試卷發下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類。

  數學解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數冪的和形式。通過配方解決數學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。

  3、換元法

  替代方法是數學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數的和和乘積的簡單應用并尋找這兩個數,也可以找到根的對稱函數并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。

  5、待定系數法

  在解決數學問題時,如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關系。為了解決數學問題,這種問題解決方法被稱為待定系數法。它是中學數學中常用的方法之一。

  6、構造法

  在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數,一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數,三角形,幾何等數學知識相互滲透,有助于解決問題。

  數學經常遇到的問題解答

  1、要提高數學成績首先要做什么?

  這一點,是很多學生所關注的,要提高數學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現,因此要提高數學成績先要把基礎夯實。

  2、基礎不好怎么學好數學?

  對于基礎差的同學來說,課本是就是學好數學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰術?

  方法君曾不止一次提到了“題海戰術”,題海戰術究竟可不可取呢?“題海戰術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經驗,這樣才能取得理想成績。

  4、做題總是粗心怎么辦?

  很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數學沒有“粗心”只有“不用心”。

高中數學知識點總結8

  總體和樣本

  ①在統計學中,把研究對象的全體叫做總體。

  ②把每個研究對象叫做個體。

  ③把總體中個體的總數叫做總體容量。

  ④為了研究總體的有關性質,一般從總體中隨機抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個體的個數稱為樣本容量。

  簡單隨機抽樣

  也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨。

  機地抽取調查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎,高三。通常只是在總體單位之間差異程度較小和數目較少時,才采用這種方法。

  簡單隨機抽樣常用的方法

  ①抽簽法

  ②隨機數表法

  ③計算機模擬法

  ④使用統計軟件直接抽取。

  在簡單隨機抽樣的樣本容量設計中,主要考慮:

  ①總體變異情況;

  ②允許誤差范圍;

  ③概率保證程度。

  抽簽法

  ①給調查對象群體中的每一個對象編號;

  ②準備抽簽的'工具,實施抽簽;

  ③對樣本中的每一個個體進行測量或調查。

  拓展閱讀:高二數學學習方法

  一、提高聽課的效率是關鍵

  課前預習能提高聽課的針對性。預習中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,預習后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預習還可以培養自己的自學能力。其次就是聽課要全神貫注。

  二、做好復習和總結工作

  做好及時的復習。課完課的當天,必須做好當天的復習。復習的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復習,然后打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當天上課內容鞏固下來,同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。

  三、指導做一定量的練習題

  做題的目的在于檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎上做一定量的練習是必要的。而對于中檔題,尢其要講究做題的效益,這就需要在做題后進行一定的“反思”,思考一下本題所用的基礎知識,把它們聯系起來,你就會得到更多的經驗和教訓,更重要的是養成善于思考的好習慣,這將大大有利于你今后的學習。

高中數學知識點總結9

  1.等差數列的定義

  如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示.

  2.等差數列的通項公式

  若等差數列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

  3.等差中項

  如果A=(a+b)/2,那么A叫做a與b的等差中項.

  4.等差數列的常用性質

  (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

  (2)若{an}為等差數列,且m+n=p+q,則am+an=ap+aq(m,n,p,q∈N_).

  (3)若{an}是等差數列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數列.

  (4)數列Sm,S2m-Sm,S3m-S2m,…也是等差數列.

  (5)S2n-1=(2n-1)an.

  (6)若n為偶數,則S偶-S奇=nd/2;

  若n為奇數,則S奇-S偶=a中(中間項).

  注意:

  一個推導

  利用倒序相加法推導等差數列的前n項和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

  ①+②得:Sn=n(a1+an)/2

  兩個技巧

  已知三個或四個數組成等差數列的一類問題,要善于設元.

  (1)若奇數個數成等差數列且和為定值時,可設為…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶數個數成等差數列且和為定值時,可設為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據等差數列的定義進行對稱設元.

  四種方法

  等差數列的判斷方法

  (1)定義法:對于n≥2的任意自然數,驗證an-an-1為同一常數;

  (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通項公式法:驗證an=pn+q;

  (4)前n項和公式法:驗證Sn=An2+Bn.

  注:后兩種方法只能用來判斷是否為等差數列,而不能用來證明等差數列.

  5.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。

  6.判定兩個平面平行的.方法:

  (1)根據定義--證明兩平面沒有公共點;

  (2)判定定理--證明一個平面內的兩條相交直線都平行于另一個平面;

  (3)證明兩平面同垂直于一條直線。

  7.兩個平面平行的主要性質:

  (1)由定義知:“兩平行平面沒有公共點”;

  (2)由定義推得:“兩個平面平行,其中一個平面內的直線必平行于另一個平面”;

  (3)兩個平面平行的性質定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;

  (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;

  (5)夾在兩個平行平面間的平行線段相等;

  (6)經過平面外一點只有一個平面和已知平面平行。

  8.乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b||a|+|b| |a-b||a|+|b| |a|b=-ba

  |a-b||a|-|b| -|a|a|a|

  一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a

  根與系數的關系 X1+X2=-b/a X1__X2=c/a 注:韋達定理

  判別式

  2-4ac=0 注:方程有兩個相等的實根

  2-4ac0 注:方程有兩個不等的實根

  2-4ac0 注:方程沒有實根,有共軛復數根

  9.三角函數公式

  兩角和公式

  in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  in(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)

  cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)

  tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))

  ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))

  和差化積

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  inA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  某些數列前n項和

  1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

  2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+n3=n2(n+1)2/4 1__2+2__3+3__4+4__5+5__6+6__7++n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

  余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標

  10.圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0

  拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱側面積 S=c__h 斜棱柱側面積 S=c__h

  正棱錐側面積 S=1/2c__h 正棱臺側面積 S=1/2(c+c)h

  圓臺側面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pi__r2

  圓柱側面積 S=c__h=2pi__h 圓錐側面積 S=1/2__c__l=pi__r__l

  弧長公式 l=a__r a是圓心角的弧度數r 0 扇形面積公式 s=1/2__l__r

  錐體體積公式 V=1/3__S__H 圓錐體體積公式 V=1/3__pi__r2h

  斜棱柱體積 V=SL 注:其中,S是直截面面積, L是側棱長

  柱體體積公式 V=s__h 圓柱體 V=pi__r2h

  11.通項公式的求法:

  (1)構造等比數列:凡是出現關于后項和前項的一次遞推式都可以構造等比數列求通項公式;

  (2)構造等差數列:遞推式不能構造等比數列時,構造等差數列;

  (3)遞推:即按照后項和前項的對應規律,再往前項推寫對應式。

  已知遞推公式求通項常見方法:

  ①已知a1=a,an+1=qan+b,求an時,利用待定系數法求解,其關鍵是確定待定系數,使an+1 +=q(an+)進而得到。

  ②已知a1=a,an=an-1+f(n)(n2),求an時,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)++(an-an-1)的方法。

  ③已知a1=a,an=f(n)an-1(n2),求an時,利用累乘法求解。

高中數學知識點總結10

  數學知識點1、柱、錐、臺、球的結構特征

  (1)棱柱:

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到

  截面距離與高的比的平方。

  (3)棱臺:

  幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖

  是一個矩形。

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

  幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

  (7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

  數學知識點2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。

  數學知識點3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

  ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

  平面

  通常用一個平行四邊形來表示。

  平面常用希臘字母α、β、γ…或拉丁字母M、N、P來表示,也可用表示平行四邊形的兩個相對頂點字母表示,如平面AC。

  在立體幾何中,大寫字母A,B,C,…表示點,小寫字母,a,b,c,…l,m,n,…表示直線,且把直線和平面看成點的集合,因而能借用集合論中的符號表示它們之間的關系,例如:

  a) A∈l—點A在直線l上;Aα—點A不在平面α內;

  b) lα—直線l在平面α內;

  c) aα—直線a不在平面α內;

  d) l∩m=A—直線l與直線m相交于A點;

  e) α∩l=A—平面α與直線l交于A點;

  f) α∩β=l—平面α與平面β相交于直線l。

  二、平面的基本性質

  公理1如果一條直線上的兩點在一個平面內,那么這條直線上所有的點都在這個平面內。

  公理2如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。

  公理3經過不在同一直線上的三個點,有且只有一個平面。

  根據上面的公理,可得以下推論。

  推論1經過一條直線和這條直線外一點,有且只有一個平面。

  推論2經過兩條相交直線,有且只有一個平面。

  推論3經過兩條平行直線,有且只有一個平面。

  公理4平行于同一條直線的兩條直線互相平行

  如何讓數學學科預習變得更高效

  一、讀一讀。預習時要認真,要逐字逐詞逐句的閱讀,用筆把重點畫出來,重點加以理解。遇到自己解決不了的問題,作出記號,教師講解時作為聽課的重點。

  二、想一想。對預習中感到困難的問題要先思考。如果是基礎問題,可以用以前的知識看看能不能弄通。如果是理解上的問題,可以記下來課上認真聽講,通過積極思考去解決。這樣有利于提高對知識的理解,養成學習數學的良好思維習慣。

  三、說一說。預習時可能感到認識模糊,可以與父母或同學進行討論,在同學們的合作交流與探討中找到正確的答案。這樣即增加了學生探求新課的興趣,有可以弄懂數學知識的實際用法,對知識有個準確的概念。

  四、寫一寫。寫一寫在課前預習中也是很有必要的,預習時要適當做學習筆記,主要包括看書時的初步體會和心得,讀明白了的問題的理解,對疑難問題的記錄和思考等。

  五、做一做。預習應用題,可以用畫線段的方法幫助理解數量間的關系,弄清已知條件和所求問題,找到解題的思路。對于一些有關圖形方面的問題,可以在預習中動手操作,剪剪拼拼,增加感性認識。

  六、補一補。數學課新舊知識間往往存在緊密的聯系,預習時如發現學習過的要領有不清楚的地方,一定要在預習時弄明白,并對舊的知識加以鞏固和記憶,同時為學習新的知識打下堅實的基礎。

  七、練一練。往往每課時的例題都是很典型的,預習時應把例題都做一遍,加深領悟的`能力。如果做題時出現錯誤,要想想錯在哪,為什么錯,怎么改錯。如果仍是找不到錯誤的根源,可在聽課時重點聽,逐步領會。

  該怎么提高數學課堂學習效率

  課堂學習是學習過程中最基本,最重要的環節,要堅持做到“五到”即耳到、眼到、口到、心到、手到;

  手到:就是以簡單扼要的方法記下聽課的要點,思維方法,以備復習、消化、再思考,但要以聽課為主,記錄為輔;

  耳到:專心聽講,聽老師如何講課,如何分析、如何歸納總結。另外,還要聽同學們的解答,看是否對自己有所啟發,特別要注意聽自己預習未看懂的問題;

  口到:主動與老師、同學們進行合作、探究,敢于提出問題,并發表自己的看法,不要人云亦云;

  眼到:就是一看老師講課的表情,手勢所表達的意思,看老師的演示實驗、板書內容,二看老師要求看的課本內容,把書上知識與老師課堂講的知識聯系起來;

  心到:就是課堂上要認真思考,注意理解課堂的新知識,課堂上的思考要主動積極。關鍵是理解并能融匯貫通,靈活使用。對于老師講的新概念,應抓住關鍵字眼,變換角度去理解。

  數學復習方法學霸分享

  1、重點練習幾種類型的題目

  不要鉆偏題、怪題、過難題的牛角尖,根據平時做套卷時的感受,多練習以下幾個類型的題目。

  (1)初看沒有思路,但分析后能順利做出的。通過對這類問題的練習,能夠使我們對題目的考點和重點更熟悉,提高建立思路的速度和切入點的準確度,讓我們能在考試中留出更多時間來處理后面難度高、閱讀量大的綜合題。

  (2)自己經常出錯的中檔題。中檔題在中考中每年的考查內容都差不多,題目位置也相對固定,屬于解決了一個板塊就能得到相應版塊分數的類型。在中檔題的某個題型經常出錯說明對這部分內容的基本概念和常用方法理解不到位。通過練習,多總結這類題目的解題思路和技巧,把不穩定的得分變成到手的分數。中檔題難度一般不會太高,所以對于自己薄弱的中檔題進行突擊練習一般都會有很好的效果。

  (3)基礎相對薄弱的同學也應該做一些常考的題目類型。比如圓的切線的判定以及與圓相關的線段計算、一次函數和反比例函數的綜合、二元一次方程整數根問題等,通過練習,進一步提高我們解決這些問題的熟練度

  2、學會看錯題的正確方式

  大部分學生都有錯題本,在復習時看錯題本,鞏固自己的錯誤是不錯的復習方式,但在看錯題時一定要杜絕連題目帶答案一起順著看下來的方式。盡量能夠將答案擋住,自己再嘗試做一遍,如果做的過程中遇到問題再去看答案,并做好標注,過兩天再試做一遍,爭取能在期末考試前將之前的錯題整體過兩到三遍、加深印象。

  3、認真研究每道題目的考點

  做題時,我們心中要對相應題目所對應的考點有所了解,比如填空題中如果出現幾何問題,主要是對圖形基本性質和面積的考察,而很少考到全等三角形的證明(尺規作圖寫依據除外),所以我們在填空題中看到幾何問題,就不用從全等方面找突破口,而是更多地注重圖形的基本性質。比如平行四邊形對角線互相平分、等腰三角形三線合一等。

  4、盡量避免只看不算

  很多同學在復習時不喜歡動筆,覺得自己看明白了就行,但俗話說“眼過千遍不如手過一遍”,不去實際操作只是看一遍題目,對題目解法和思路的印象其實是很低的。而且在計算過程中還能鍛煉我們的計算能力,提高解題速度和準確性。許多同學在寫證明題時很不熟練,邏輯不順暢,也是由于平時對書寫的不重視,應該趁著期末考試前的時間,多練練書寫。

  學好數學要重視“四個依據”是什么

  讀好一本教科書——它是教學、考試的主要依據;

  記好一本筆記——它是教師多年經驗的結晶;

  做好一本習題集——它是知識的拓寬;

  記好一本心得筆記——它是你自己的知識。

高中數學知識點總結11

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)數量:只有大小,沒有方向的量.

  (3)有向線段的三要素:起點、方向、長度.

  (4)零向量:長度為0的向量.

  (5)單位向量:長度等于1個單位的`向量.

  (6)平行向量(共線向量):方向相同或相反的非零向量.

  ※零向量與任一向量平行.

  (7)相等向量:長度相等且方向相同的向量.

  2.向量加法運算:

  ⑴三角形法則的特點:首尾相連.

  ⑵平行四邊形法則的特點:共起點

高中數學知識點總結12

  總結是指社會團體、企業單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經驗,找出差距,得出教訓和一些規律性認識的一種書面材料,寫總結有利于我們學習和工作能力的提高,讓我們來為自己寫一份總結吧。我們該怎么寫總結呢?下面是小編收集整理的高中數學必修2知識點總結,歡迎大家分享。

  高中數學必修2知識點總結1

  一、直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線的斜率

  ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即ktan。斜率反映直線與軸的傾斜程度。

  當0,90時,k0;當90,180時,k0;當90時,k不存在。

  yy1(x1x2)②過兩點的直線的斜率公式:k2x2x1注意下面四點:(1)當x1x2時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

  (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。(3)直線方程

  ①點斜式:yy1k(xx1)直線斜率k,且過點x1,y1

  注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。

  當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

  ②斜截式:ykxb,直線斜率為k,直線在y軸上的截距為b③兩點式:④截矩式:

  yy1y2y1xayxx1x2x1(x1x2,y1y2)直線兩點x1,y1,x2,y2

  1b其中直線l與x軸交于點(a,0),與y軸交于點(0,b),即l與x軸、y軸的截距分別為a,b。

  ⑤一般式:AxByC0(A,B不全為0)

  1各式的適用范圍○2特殊的方程如:注意:○

  平行于x軸的直線:yb(b為常數);平行于y軸的直線:xa(a為常數);(5)直線系方程:即具有某一共同性質的直線(一)平行直線系

  平行于已知直線A0xB0yC00(A0,B0是不全為0的常數)的直線系:

  A0xB0yC0(C為常數)

  (二)過定點的直線系

  ()斜率為k的直線系:yy0kxx0,直線過定點x0,y0;

  ()過兩條直線l1:A1xB1yC10,l2:A2xB2yC20的交點的直線系方程為,其中直線l2不在直線系中。A1xB1yC1A2xB2yC20(為參數)(6)兩直線平行與垂直

  當l1:yk1xb1,l2:yk2xb2時,l1//l2k1k2,b1b2;l1l2k1k21

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。(7)兩條直線的交點

  l1:A1xB1yC10l2:A2xB2yC20相交交點坐標即方程組A1xB1yC10的一組解。

  A2xB2yC20方程組無解l1//l2;方程組有無數解l1與l2重合(8)兩點間距離公式:設A(x1,y1),B是平面直角坐標系中的兩個點,(x2,y2)則|AB|(x2x1)2(y2y1)2

  (9)點到直線距離公式:一點Px0,y0到直線l1:AxByC0的距離d(10)兩平行直線距離公式

  在任一直線上任取一點,再轉化為點到直線的距離進行求解。

  Ax0By0CAB22

  二、圓的方程

  1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的

  半徑。

  2、圓的方程

  (1)標準方程xaybr2,圓心a,b,半徑為r;

  22(2)一般方程x2y2DxEyF0當DE2224F0時,方程表示圓,此時圓心為22D2,1E,半徑為r22D2E24F

  當DE4F0時,表示一個點;當DE4F0時,方程不表示任何圖

  形。

  (3)求圓方程的方法:一般都采用待定系數法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。3、直線與圓的位置關系:

  直線與圓的位置關系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:

  (1)設直線l:AxByC0,圓C:xa2yb2r2,圓心Ca,b到l的距離為

  dAaBbCAB222,則有drl與C相離;drl與C相切;drl與C相交

  22(2)設直線l:AxByC0,圓C:xaybr2,先將方程聯立消元,得到一個一元二次方程之后,令其中的判別式為,則有

  0l與C相離;0l與C相切;0l與C相交

  2注:如果圓心的位置在原點,可使用公式xx0yy0r去解直線與圓相切的問題,其中x0,y0表示切點坐標,r表示半徑。

  (3)過圓上一點的切線方程:

  22

  ①圓x2+y2=r,圓上一點為(x0,y0),則過此點的切線方程為xx0yy0r(課本命題).

  2222

  ②圓(x-a)+(y-b)=r,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r(課本命題的推廣).

  4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。設圓C1:xa12yb12r2,C2:xa22yb22R2兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。當dRr時兩圓外離,此時有公切線四條;

  當dRr時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;當RrdRr時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當dRr時,兩圓內切,連心線經過切點,只有一條公切線;當dRr時,兩圓內含;當d0時,為同心圓。

  三、立體幾何初步

  1、柱、錐、臺、球的結構特征

  (1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共

  邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點字母,如五棱柱ABCDEA"B"C"D"E"或用對角線的端點字母,如五棱柱

  "AD

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且

  相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

  分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點字母,如五棱錐PABCDE

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到

  截面距離與高的比的平方。

  (3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等

  """""表示:用各頂點字母,如五棱臺PABCDE

  幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的'頂點(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖

  是一個矩形。

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何

  體

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。(6)圓臺:定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

  側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

  ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

  4、柱體、錐體、臺體的表面積與體積

  (1)幾何體的表面積為幾何體各個面的面積的和。

  (2)特殊幾何體表面積公式(c為底面周長,h為高,h為斜高,l為母線)

  "

  S直棱柱側面積S正棱臺側面積12chS圓柱側2rhS正棱錐側面積(c1c2)h"S圓臺側面積(rR)l

  12ch"S圓錐側面積rl

  S圓柱表2rrlS圓錐表rrlS圓臺表r2rlRlR2

  (3)柱體、錐體、臺體的體積公式V柱ShV圓柱ShV臺13(S""21rhV錐ShV圓錐1r2h

  33SSS)hV圓臺13(S"SSS)h"13(rrRR)h

  22

  (4)球體的表面積和體積公式:V球4、空間點、直線、平面的位置關系

  =

  43R3;S

  球面=4R2

  (1)平面

  ①平面的概念:A.描述性說明;B.平面是無限伸展的;

  ②平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個銳角內);

  也可以用兩個相對頂點的字母來表示,如平面BC。

  ③點與平面的關系:點A在平面內,記作A;點A不在平面內,記作A點與直線的關系:點A的直線l上,記作:A∈l;點A在直線l外,記作Al;

  直線與平面的關系:直線l在平面α內,記作lα;直線l不在平面α內,記作lα。(2)公理1:如果一條直線的兩點在一個平面內,那么這條直線是所有的點都在這個平面內。

  (即直線在平面內,或者平面經過直線)

  應用:檢驗桌面是否平;判斷直線是否在平面內

  用符號語言表示公理1:Al,Bl,A,Bl(3)公理2:經過不在同一條直線上的三點,有且只有一個平面。

  推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

  公理2及其推論作用:①它是空間內確定平面的依據②它是證明平面重合的依據(4)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

  符號:平面α和β相交,交線是a,記作α∩β=a。

  符號語言:PABABl,Pl公理3的作用:

  ①它是判定兩個平面相交的方法。

  ②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。③它可以判斷點在直線上,即證若干個點共線的重要依據。(5)公理4:平行于同一條直線的兩條直線互相平行(6)空間直線與直線之間的位置關系

  ①異面直線定義:不同在任何一個平面內的兩條直線②異面直線性質:既不平行,又不相交。

  ③異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線④異面直線所成角:直線a、b是異面直線,經過空間任意一點O,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。說明:(1)判定空間直線是異面直線方法:①根據異面直線的定義;②異面直線的判定定理(2)在異面直線所成角定義中,空間一點O是任取的,而和點O的位置無關。②求異面直線所成角步驟:

  A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來求角

  (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。(8)空間直線與平面之間的位置關系

  直線在平面內有無數個公共點.

  三種位置關系的符號表示:aαa∩α=Aa∥α

  (9)平面與平面之間的位置關系:平行沒有公共點;α∥β

  相交有一條公共直線。α∩β=b

  5、空間中的平行問題

  (1)直線與平面平行的判定及其性質

  線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。

  線線平行線面平行

  線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,

  那么這條直線和交線平行。線面平行線線平行

  (2)平面與平面平行的判定及其性質兩個平面平行的判定定理

  (1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行

  (線面平行→面面平行),

  (2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行。(線線平行→面面平行),

  (3)垂直于同一條直線的兩個平面平行,兩個平面平行的性質定理

  (1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行。(面面平行→線面平行)(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)7、空間中的垂直問題

  (1)線線、面面、線面垂直的定義①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。

  ③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。(2)垂直關系的判定和性質定理①線面垂直判定定理和性質定理判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面。性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。②面面垂直的判定定理和性質定理

  判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直。性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面。

  9、空間角問題

  (1)直線與直線所成的角

  ①兩平行直線所成的角:規定為0。

  ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線a,b,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

  (2)直線和平面所成的角

  ①平面的平行線與平面所成的角:規定為0。②平面的垂線與平面所成的角:規定為90。③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

  在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。(3)二面角和二面角的平面角①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射.....線,這兩條射線所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角④求二面角的方法

  定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角7、空間直角坐標系

  (1)定義:如圖,OBCDD,A,B,C,是單位正方體.以A為原點,分別以OD,OA,,OB的方向為正方向,建立三條數軸x軸.y軸.z軸。這時建立了一個空間直角坐標系Oxyz.

  1)O叫做坐標原點2)x軸,y軸,z軸叫做坐標軸.3)過每兩個坐標軸的平面叫做坐標面。

  (2)右手表示法:令右手大拇指、食指和中指相互垂直時,可能形成的位置。大拇指指向為x軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。

  (3)任意點坐標表示:空間一點M的坐標可以用有序實數組(x,y,z)來表示,有序實數組(x,y,z)叫做點M在此空間直角坐標系中的坐標,記作M(x,y,z)(x叫做點M的橫坐標,y叫做點M的縱坐標,z叫做點M的豎坐標)

  (4)空間兩點距離坐標公式:d(x2x1)2(y2y1)2(z2z1)2

  高中數學必修2知識點總結2

  一、直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

  (2)直線的斜率

  ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即ktan。斜率反映直線與軸的傾斜程度。當0,90時,k0;當90y2y1x2x1,180時,k0;當90時,k不存在。

  ②過兩點的直線的斜率公式:k(x1x2)

  注意下面四點:

  (1)當x1x2時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

  (3)直線方程

  ①點斜式:yy1k(xx1)直線斜率k,且過點x1,y1注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。

  當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

  ②斜截式:ykxb,直線斜率為k,直線在y軸上的截距為b③兩點式:

  yy1y2y1xyxx1x2x1(x1x2,y1y2)直線兩點x1,y1,x2,y2

  ④截矩式:

  ab其中直線l與x軸交于點(a,0),與y軸交于點(0,b),即l與x軸、y軸的截距分別為a,b。

  1

  ⑤一般式:

  AxByC0(A,B不全為0)

  注意:○1各式的適用范圍○2特殊的方程如:

  平行于x軸的直線:yb(b為常數);平行于y軸的直線:(5)直線系方程:即具有某一共同性質的直線(一)平行直線系(二)過定點的直線系

  ()斜率為k的直線系:yy0kxx0,直線過定點x0,y0;()過兩條直線l1:A1xB1yC10,l2xa(a為常數);

  平行于已知直線A0xB0yC00(A0,B0是不全為0的常數)的直線系:A0xB0yC0(C為常數)

  :A2xB2yC20的交點的直線系方程為

  A1xB1yC1A2xB2yC20((6)兩直線平行與垂直

  當l1:yk1xb1,l2:yk2xb2時,

  為參數),其中直線l2不在直線系中。

  l1//l2k1k2,b1b2;l1l2k1k21

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。

  (7)兩條直線的交點

  l1:A1xB1yC10l2:A2xB2yC20相交

  AxB1yC10交點坐標即方程組1的一組解。

  AxByC0222方程組無解l1//l2;方程組有無數解l1與l2重合

  (8)兩點間距離公式:設A(x1,y1),B是平面直角坐標系中的兩個點,(x2,y2)則|AB|(x2x1)(y2y1)

  (9)點到直線距離公式:一點Px0,y0到直線l1:AxByC0的距離dAx0By0C

  AB22(10)兩平行直線距離公式

  在任一直線上任取一點,再轉化為點到直線的距離進行求解。

  二、圓的方程

  1、圓的定義:平面內到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。2、圓的方程

  (1)標準方程xayb22r,圓心a,b,半徑為r;

  2(2)一般方程x當D22yDxEyF0

  D222E24F0時,方程表示圓,此時圓心為2,1E,半徑為r22D2E24F

  當DE4F0時,表示一個點;當DE4F0時,方程不表示任何圖形。

  (3)求圓方程的方法:

  一般都采用待定系數法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。3、直線與圓的位置關系:

  直線與圓的位置關系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:

  22(1)設直線l:AxByC0,圓C:xaybr2,圓心Ca,b到l的距離為dAaBbC,則有

  2222ABdrl與C相離;drl與C相切;drl與C相交

  (2)設直線l:AxByC0,圓C:xaybr,先將方程聯立消元,得到一個一元二次方程之后,令

  222其中的判別式為,則有

  0l與C相離;0l與C相切;0l與C相交

  注:如果圓心的位置在原點,可使用公式xx0yy0r去解直線與圓相切的問題,其中x0,y0表示切點坐標,r表示

  2半徑。

  (3)過圓上一點的切線方程:

  ①圓x2+y2=r2,圓上一點為(x0,y0),則過此點的切線方程為xx0yy0r(課本命題).

  ②圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2(課本命題的推廣).4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。設圓C1:xa1yb1r2,C2:xa22222yb222R

  兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。當dRr時兩圓外離,此時有公切線四條;

  當dRr時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;當RrdRr時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當dRr時,兩圓內切,連心線經過切點,只有一條公切線;當dRr時,兩圓內含;當d三、立體幾何初步

  0時,為同心圓。

  "(2)特殊幾何體表面積公式(c為底面周長,h為高,h為斜高,l為母線)

  S直棱柱側面積S正棱臺側面積12chS圓柱側2rhS正棱錐側面積12ch"S圓錐側面積rl

  (c1c2)h"S圓臺側面積(rR)l

  S圓柱表2rrlS圓錐表rrlS圓臺表r2rlRlR2

  (3)柱體、錐體、臺體的體積公式

  V柱ShV圓柱Sh211rhV錐ShV圓錐r2h

  V臺13(S"SSS)hV圓臺"133(S"SSS)h2

  "13(rrRR)h

  22(4)球體的表面積和體積公式:V球=4R3;S球面=4R4、空間點、直線、平面的位置關系(1)平面

  ①平面的概念:A.描述性說明;B.平面是無限伸展的;

  ②平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個銳角內);

  也可以用兩個相對頂點的字母來表示,如平面BC。

  ③點與平面的關系:點A在平面內,記作A;點A不在平面內,記作A

  點與直線的關系:點A的直線l上,記作:A∈l;點A在直線l外,記作Al;直線與平面的關系:直線l在平面α內,記作lα;直線l不在平面α內,記作lα。

  (2)公理1:如果一條直線的兩點在一個平面內,那么這條直線是所有的點都在這個平面內。(即直線在平面內,或者平面經過直線)應用:檢驗桌面是否平;判斷直線是否在平面內用符號語言表示公理1:Al,Bl,A,Bl(3)公理2:經過不在同一條直線上的三點,有且只有一個平面。

  推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。公理2及其推論作用:①它是空間內確定平面的依據②它是證明平面重合的依據

  (4)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線符號:平面α和β相交,交線是a,記作α∩β=a。符號語言:PABABl,Pl

  公理3的作用:①它是判定兩個平面相交的方法。②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。③它可以判斷點在直線上,即證若干個點共線的重要依據。(5)公理4:平行于同一條直線的兩條直線互相平行(6)空間直線與直線之間的位置關系

  ①異面直線定義:不同在任何一個平面內的兩條直線②異面直線性質:既不平行,又不相交。

  ③異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

  ④異面直線所成角:直線a、b是異面直線,經過空間任意一點O,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。說明:(1)判定空間直線是異面直線方法:①根據異面直線的定義;②異面直線的判定定理(2)在異面直線所成角定義中,空間一點O是任取的,而和點O的位置無關。②求異面直線所成角步驟:

  A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。B、證明作

  出的角即為所求角C、利用三角形來求角

  (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。(8)空間直線與平面之間的位置關系

  直線在平面內有無數個公共點.

  三種位置關系的符號表示:aαa∩α=Aa∥α

  (9)平面與平面之間的位置關系:平行沒有公共點;α∥β

  相交有一條公共直線。α∩β=b

  5、空間中的平行問題

  (1)直線與平面平行的判定及其性質

  線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。線線平行線面平行

  線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。線面平行線線平行

  (2)平面與平面平行的判定及其性質兩個平面平行的判定定理

  (1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行(線面平行→面面平行),(2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行。(線線平行→面面平行),(3)垂直于同一條直線的兩個平面平行,

  兩個平面平行的性質定理

  (1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行。(面面平行→線面平行)(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)7、空間中的垂直問題

  (1)線線、面面、線面垂直的定義

  ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。

  ③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。(2)垂直關系的判定和性質定理①線面垂直判定定理和性質定理

  判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面。性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

  ②面面垂直的判定定理和性質定理

  判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直。

  性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面。9、空間角問題

  (1)直線與直線所成的角

  ①兩平行直線所成的角:規定為0。

  ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線a,條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。(2)直線和平面所成的角

  ①平面的平行線與平面所成的角:規定為0。②平面的垂線與平面所成的角:規定為90。

  ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

  在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。(3)二面角和二面角的平面角

  ①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

  ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角.....的平面角。

  ③直二面角:平面角是直角的二面角叫直二面角。

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

  ④求二面角的方法

  定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角

  垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角7、空間直角坐標系

  (1)定義:如圖,OBCDDABC是單位正方體.以A為原點,

  分別以OD,OA,OB的方向為正方向,建立三條數軸x軸.y軸.z軸。

  這時建立了一個空間直角坐標系Oxyz.

  1)O叫做坐標原點2)x軸,y軸,z軸叫做坐標軸.3)過每兩個坐標軸的平面叫做坐標面。

  (2)右手表示法:令右手大拇指、食指和中指相互垂直時,可能形成的位置。大拇指指向為x軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。

  (3)任意點坐標表示:空間一點M的坐標可以用有序實數組(x,y,z)來表示,有序實數組(x,y,z)叫做點M在此空間直角坐標系中的坐標,記作M(x,y,z)(x叫做點M的橫坐標,y叫做點M的縱坐標,z叫做點M的豎坐標)(4)空間兩點距離坐標公式:d

  222(x2x1)(y2y1)(z2z1)

高中數學知識點總結13

  一、集合、簡易邏輯

  1、集合;

  2、子集;

  3、補集;

  4、交集;

  5、并集;

  6、邏輯連結詞;

  7、四種命題;

  8、充要條件。

  二、函數

  1、映射;

  2、函數;

  3、函數的單調性;

  4、反函數;

  5、互為反函數的函數圖象間的關系;

  6、指數概念的擴充;

  7、有理指數冪的運算;

  8、指數函數;

  9、對數;

  10、對數的運算性質;

  11、對數函數。

  12、函數的應用舉例。

  三、數列(12課時,5個)

  1、數列;

  2、等差數列及其通項公式;

  3、等差數列前n項和公式;

  4、等比數列及其通頂公式;

  5、等比數列前n項和公式。

  四、三角函數

  1、角的概念的推廣;

  2、弧度制;

  3、任意角的三角函數;

  4、單位圓中的三角函數線;

  5、同角三角函數的基本關系式;

  6、正弦、余弦的誘導公式;

  7、兩角和與差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函數、余弦函數的圖象和性質;

  10、周期函數;

  11、函數的奇偶性;

  12、函數的圖象;

  13、正切函數的圖象和性質;

  14、已知三角函數值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法舉例。

  五、平面向量

  1、向量;

  2、向量的加法與減法;

  3、實數與向量的積;

  4、平面向量的坐標表示;

  5、線段的定比分點;

  6、平面向量的數量積;

  7、平面兩點間的距離;

  8、平移。

  六、不等式

  1、不等式;

  2、不等式的'基本性質;

  3、不等式的證明;

  4、不等式的.解法;

  5、含絕對值的不等式。

  七、直線和圓的方程

  1、直線的傾斜角和斜率;

  2、直線方程的點斜式和兩點式;

  3、直線方程的一般式;

  4、兩條直線平行與垂直的條件;

  5、兩條直線的交角;

  6、點到直線的距離;

  7、用二元一次不等式表示平面區域;

  8、簡單線性規劃問題;

  9、曲線與方程的概念;

  10、由已知條件列出曲線方程;

  11、圓的標準方程和一般方程;

  12、圓的參數方程。

  八、圓錐曲線

  1、橢圓及其標準方程;

  2、橢圓的簡單幾何性質;

  3、橢圓的參數方程;

  4、雙曲線及其標準方程;

  5、雙曲線的簡單幾何性質;

  6、拋物線及其標準方程;

  7、拋物線的簡單幾何性質。

  九、直線、平面、簡單何體

  1、平面及基本性質;

  2、平面圖形直觀圖的畫法;

  3、平面直線;

  4、直線和平面平行的判定與性質;

  5、直線和平面垂直的判定與性質;

  6、三垂線定理及其逆定理;

  7、兩個平面的位置關系;

  8、空間向量及其加法、減法與數乘;

  9、空間向量的坐標表示;

  10、空間向量的數量積;

  11、直線的方向向量;

  12、異面直線所成的角;

  13、異面直線的公垂線;

  14、異面直線的距離;

  15、直線和平面垂直的性質;

  16、平面的法向量;

  17、點到平面的距離;

  18、直線和平面所成的角;

  19、向量在平面內的射影;

  20、平面與平面平行的性質;

  21、平行平面間的距離;

  22、二面角及其平面角;

  23、兩個平面垂直的判定和性質;

  24、多面體;

  25、棱柱;

  26、棱錐;

  27、正多面體;

  28、球。

  十、排列、組合、二項式定理

  1、分類計數原理與分步計數原理;

  2、排列;

  3、排列數公式;

  4、組合;

  5、組合數公式;

  6、組合數的兩個性質;

  7、二項式定理;

  8、二項展開式的性質。

  十一、概率

  1、隨機事件的概率;

  2、等可能事件的概率;

  3、互斥事件有一個發生的概率;

  4、相互獨立事件同時發生的概率;

  5、獨立重復試驗。

  必修一函數重點知識整理

  1、函數的奇偶性

  (1)若f(x)是偶函數,那么f(x)=f(—x);

  (2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);

  (3)判斷函數奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);

  (4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

  (5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

  2、復合函數的有關問題

  (1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

  (2)復合函數的單調性由“同增異減”判定;

  3、函數圖像(或方程曲線的對稱性)

  (1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

  (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

  (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;

  (5)若函數y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關于直線x=a對稱;

  (6)函數y=f(x—a)與y=f(b—x)的圖像關于直線x=對稱;

  4、函數的周期性

  (1)y=f(x)對x∈R時,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;

  (2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

  (3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

  (4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;

  (5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;

  (6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0,a≠1,b>0,n∈R+);

  (2)l og a N=(a>0,a≠1,b>0,b≠1);

  (3)l og a b的符號由口訣“同正異負”記憶;

  (4)a log a N= N(a>0,a≠1,N>0);

  8、判斷對應是否為映射時,抓住兩點:

  (1)A中元素必須都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

  10、對于反函數,應掌握以下一些結論:

  (1)定義域上的單調函數必有反函數;

  (2)奇函數的反函數也是奇函數;

  (3)定義域為非單元素集的偶函數不存在反函數;

  (4)周期函數不存在反函數;

  (5)互為反函數的兩個函數具有相同的單調性;

  (6)y=f(x)與y=f—1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

  11、處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關系;

  12、依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題

  13、恒成立問題的處理方法:

  (1)分離參數法;

  (2)轉化為一元二次方程的根的分布列不等式(組)求解。

  拓展閱讀:高中數學復習方法

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰術,而是要通過一題聯想到很多題。

  3、錯一次反思一次

  每次業及考試或多或少會發生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現的錯誤記錄下來分析,并盡力保證在下次考試時不發生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

  4、分析試卷總結經驗

  每次考試結束試卷發下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類。

高中數學知識點總結14

  1、平面的基本性質:

  掌握三個公理及推論,會說明共點、共線、共面問題。

  能夠用斜二測法作圖。

  2、空間兩條直線的位置關系:

  平行、相交、異面的概念;

  會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。

  3、直線與平面

  ①位置關系:平行、直線在平面內、直線與平面相交。

  ②直線與平面平行的判斷方法及性質,判定定理是證明平行問題的依據。

  ③直線與平面垂直的證明方法有哪些?

  ④直線與平面所成的角:關鍵是找它在平面內的射影,范圍是

  ⑤三垂線定理及其逆定理:每年高考試題都要考查這個定理。 三垂線定理及其逆定理主要用于證明垂直關系與空間圖形的度量。如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線。

  4、平面與平面

  (1)位置關系:平行、相交,(垂直是相交的.一種特殊情況)

  (2)掌握平面與平面平行的證明方法和性質。

  (3)掌握平面與平面垂直的證明方法和性質定理。尤其是已知兩平面垂直,一般是依據性質定理,可以證明線面垂直。

  (4)兩平面間的距離問題→點到面的距離問題→

  (5)二面角。二面角的平面交的作法及求法:

  ①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;

  ②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。

  ③射影面積法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法。

高中數學知識點總結15

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  一、求動點的軌跡方程的基本步驟。

  1、建立適當的坐標系,設出動點M的坐標;

  2、寫出點M的集合;

  3、列出方程=0;

  4、化簡方程為最簡形式;

  5、檢驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  3、相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

  4、參數法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。

  5、交軌法:將兩動曲線方程中的.參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  求動點軌跡方程的一般步驟:

  ①建系——建立適當的坐標系;

  ②設點——設軌跡上的任一點P(x,y);

  ③列式——列出動點p所滿足的關系式;

  ④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;

  ⑤證明——證明所求方程即為符合條件的動點軌跡方程。

【高中數學知識點總結】相關文章:

高中數學的知識點總結04-10

高中數學基本的知識點總結09-28

高中數學知識點的總結12-19

高中數學復數知識點總結04-16

高中數學知識點的總結03-13

高中數學導數知識點總結02-11

高中數學全部知識點總結02-20

高中數學知識點總結05-15

高中數學知識點總結09-22

高中數學的基本知識點總結07-19

国产一区二区波多野结衣| 精品成人免费一区二区不卡| 夜夜躁狠狠躁日日躁2022| 亚洲午夜久久久久妓女影院| 丰满熟女高潮毛茸茸欧洲视频| 亚洲综合久久无码色噜噜| 任你躁久久精品6| 日本一道人妻无码一区在线| 美女露出奶头扒开尿口免费网站| 亚洲国产精品无码中文在线 | 久久精品国产国产精品四凭| 亚洲午夜福利av一区二区无码| 男女18禁啪啪无遮挡| 国产av剧情md精品磨豆| 国产无遮挡又黄又爽动态图| 亚洲高清成人av电影网站| 夜夜春亚洲嫩草影院| 无码不卡黑人与日本人| 日韩 另类 综合 自拍 亚洲| 国内高清久久久久久| 国产精品亚洲mnbav网站| 亚洲精品欧美日韩一区| 人妻少妇中文字幕久久| 国产极品精品自在线| 亚洲国产成人高清影视| 五月狠狠亚洲小说专区| 成人无码av免费网站| 中文字幕理伦午夜福利片| 三级日本高清完整版热播| 无码少妇一区二区性色av| 国产精品亚洲а∨天堂123| 日本成本人三级在线观看| 亚洲精品av中文字幕在线| 色77久久综合网| 在线 国产 精品 蜜芽| 色综合色狠狠天天综合网| 高潮抽搐潮喷毛片在线播放| 成人午夜爽爽爽免费视频| 久久久亚洲精品av无码| 亚洲乱亚洲乱妇在线| 99蜜桃臀久久久欧美精品| 中文字幕乱码亚洲无线码| 2020最新无码国产在线观看| 囯精品人妻无码一区二区三区99| 久久久久人妻一区二区三区vr| 人妻熟女一区二区aⅴ千叶宁真| 国产无遮挡又黄又爽在线视频 | 亚洲真人无码永久在线观看| 人妻无码专区一区二区三区| 亚洲精品久久久久999666| 日韩亚洲欧美精品综合| 天堂在线中文网www| 亚洲国产欧美国产第一区| 日本19禁啪啪吃奶大尺度| 亚洲精品国产精品国产自| 一区二区狠狠色丁香久久婷婷| 日本一道综合久久aⅴ免费| 国产色产综合色产在线视频| 色午夜一av男人的天堂| 成人区亚洲区无码区在线点播 | 国产在热线精品视频99公交| 亚洲欧美日韩另类丝袜一区| 成年美女黄网站18禁免费| 久久夜色精品国产噜噜亚洲sv | 人妻与老人中文字幕| 国产免费不卡av在线播放| 巨爆乳无码视频在线观看| 亚洲高清一区二区三区电影| 久久www免费人咸_看片| 亚洲精品久久久久久中文字幂| 欧美老熟妇乱子伦牲交视频| 玩弄少妇肉体到高潮动态图| 天天拍夜夜添久久精品大| 国产福利一区二区麻豆| 国产美女自卫慰视频福利| 亚洲熟妇丰满xxxxx国语| 亚洲高清中文字幕在线看不卡| 色婷婷亚洲一区二区综合| 成人动漫综合网| 无码精品人妻一区二区三区涩爱| 国产欧美在线手机视频| 国产在线精品无码二区| 国产人成无码视频在线软件| 中文无码不卡人妻在线看| 在线看免费无码av天堂的| 国产在线欧美日韩精品一区| 国产成人精品午夜福利不卡| 日韩av无码久久精品免费| 国产成人 综合 亚洲欧美| 亚洲麻豆av成本人无码网站| 在教室伦流澡到高潮hnp视频 | 久久www免费人成_看片中文| 东京热中文字幕a∨无码| 人妻免费一区二区三区最新| 国产一区视频一区欧美| 国产精品亚洲二区在线看| 国产极品精品自在线| 亚洲欧美日韩另类丝袜一区| 无码人妻一区二区三区免费看成人| 欧美人与动牲交a免费| 黑人巨大精品欧美视频一区| 国产在线拍揄自揄视频网站| 亚洲影院丰满少妇中文字幕无码 | 好大好湿好硬顶到了好爽视频| 99视频国产精品免费观看| 性欧美大战久久久久久久久| 免费久久99精品国产自在现线| 亚洲狠狠色丁香婷婷综合| 亚洲精品伦理熟女国产一区二区 | 亚洲色精品vr一区区三区| 国产精品无码a∨精品影院app| 久久www成人免费看| 中文字幕无码久久一区| 大香伊蕉日本一区二区| av蓝导航精品导航| 久久精品无码人妻无码av| 色成人精品免费视频| 朝鲜女子内射杂交bbw| 久久久这里只有免费精品| 亚洲中文字幕乱码av波多ji| 亚洲—本道 在线无码| 国产亚洲曝欧美曝妖精品| 国产成人无码免费视频79| 久9视频这里只有精品| 巨爆乳无码视频在线观看| 免费无码av片在线观看播放| 国产精品爽爽va在线观看无码| 日韩精品一卡二卡3卡四卡2| 精品国产精品久久一区免费式| 欧美人与动牲交欧美精品| 国产欧美在线一区二区三区| 上司人妻互换hd无码| 亚洲欧美综合精品久久成人网| 亚洲a成人无m网站在线| 亚洲综合色婷婷在线影院p厂| 久久夜色撩人精品国产| 狠狠躁天天躁无码中文字幕图| 国产免费极品av吧在线观看| 亚洲免费观看在线美女视频| 精品国产电影久久九九| 久久五十路丰满熟女中出| 国产又色又爽又黄刺激的视频| 国产成年女人毛片80s网站| 国产免费无遮挡吸乳视频| 99精品热在线在线观看视频| 欧美国产国产综合视频| 久久久亚洲综合久久久久87| 久久人人爽人人爽久久小说| 人妻无码人妻有码中文字幕| 无码毛片内射白浆视频| 自偷自拍亚洲综合精品第一页| 奇米影视888欧美在线观看| 动漫精品中文无码通动漫| 日韩系列无码一中文字暮| 欧美va久久久噜噜噜久久| 上海少妇高潮狂叫喷水了| 18禁无遮挡免费视频网站| 日本真人边吃奶边做爽动态图| av无码国产在线观看岛国 | 五月丁香色综合久久4438| 免费做a爰片久久毛片a片下载 | 国产亚洲欧洲aⅴ综合一区| 2020久热爱精品视频在线观看| 丁香婷婷激情综合俺也去| 在线精品国产一区二区三区 | 99国产精品久久99久久久| 五十六十日本老熟妇乱| 国产免费一区二区三区不卡| 中文字幕日韩精品一区二区三区 | 国产精品专区第1页| 朝鲜女人大白屁股ass| 又大又爽又黄无码a片| 大香伊蕉日本一区二区| 无码免费毛片手机在线| 亚洲国产综合专区在线播放| 亚洲欧美综合区自拍另类| 亚洲鲁丝片一区二区三区| 在线观看免费网页欧美成| 久久大香香蕉国产免费网vrr| 成人无码在线视频区| 制服丝袜国产av无码| 国产无遮挡又黄又爽动态图| 久久亚洲色www成人男男| 亚洲国产一区二区三区在观看| 久久国产精品久久精| 人妻av乱片av出轨| 亚洲高清成人aⅴ片777| 亚洲综合色区另类aⅴ| 国产亚洲精品成人aa片| 亚洲a成人片在线观看| 米奇欧美777四色影视在线 | 成人片国产精品亚洲| 精品国产肉丝袜久久| 久久人人97超碰精品| 精品国产丝袜黑色高跟鞋| 欧美自拍嘿咻内射在线观看 | 亚洲国产一区二区三区在观看| 国产做爰xxxⅹ久久久| 国产又黄又爽又色的免费| 国产成人亚洲精品青草| 中文字幕成人精品久久不卡| 欧美成人欧美va天堂在线电影| 色猫咪av在线观看| 久久精品一本到东京热| 久久视热这里只有精品| av夜夜躁狠狠躁日日躁| 亚洲综合色aaa成人无码| 久久69精品久久久久久hb| 亚洲中文字幕无码久久精品1| 天天狠天天添日日拍| 久久永久免费人妻精品| 亚洲综合无码中文字幕第2页 | 国产线观看免费观看| 亚洲第一在线综合网站| 人妻av中文字幕无码专区| 亚洲精品色情aⅴ色戒| 少妇饥渴偷公乱av在线观看涩爱| 插b内射18免费视频| 免费国产va在线观看| 成人一在线视频日韩国产| 国产精品99爱免费视频| 亚洲第一区欧美国产综合| 久久国产偷任你爽任你| 亚洲乱码中文字幕综合234| 国产人妻精品无码av在线| 无码人妻精品一区二区三区久久 | 一夲道无码人妻精品一区二区| 国产精品卡一卡二卡三| 国产乱人伦偷精品视频免| 97爱亚洲综合成人| 亚洲制服丝中文字幕| 成人aⅴ综合视频国产| 国产精品香蕉视频在线| 亚洲精品入口一区二区乱麻豆精品| 99热爱久久99热爱九九热爱| 欧美丰满大黑帍在线播放| 亚洲精品综合在线影院| 国产亚洲精品无码不卡| 久久亚洲精品成人无码网站夜色| 国产传媒18精品免费1区| 亚洲欧美激情四射在线日| 国产精品国产三级国产普通话| 性高朝久久久久久久| 亚洲午夜久久久影院伊人| 国语自产精品视频在线区| 东京热人妻系列无码专区| 伊人久久大香线蕉综合色狠狠| 亚洲 校园 欧美 国产 另类| 亚洲夜夜欢a∨一区二区三区 | 日韩国产亚洲高清在线久草| 国产精品乱子乱xxxx| 欧美色欧美亚洲高清在线视频| 国产欧美在线一区二区三区| 国产成人av亚洲一区二区| 亚洲色成人网站www永久男男| 久久996re热这里只有精品无码 | 国产日韩一区在线精品| 国产亚洲精品a在线观看| 国产精品人成视频免费999| 国产又色又爽又黄的在线观看视频 | 国产99视频精品免费视频6| 无码中文资源在线播放| 人妻出差精油按摩被中出| 亚洲精品图片区小说区| 亚洲综合一区二区三区无码| 亚洲精品综合网在线8050影院| 亚洲精品久久久久国产剧8| 亚洲美女精品免费视频| 国产精品青青青高清在线| 成人午夜爽爽爽免费视频| 中文字幕亚洲制服在线看| 青草影院内射中出高潮| 亚洲色帝国综合婷婷久久| 成人亚洲a片v一区二区三区麻豆| 无码av免费永久免费永久专区| 国产熟妇按摩3p高潮大叫| 日韩欧美精品有码在线洗濯屋| 婷婷五月综合丁香在线| 九九国产精品无码免费视频| 中文字幕一区二区三区波多野结衣| 亚洲日韩av无码不卡一区二区三区 | 国产精品久久久久久无码五月| 国产欧美视频综合二区| 日韩av无码久久精品免费| 看曰本女人大战黑人视频| 人人超碰人人超级碰国| 亚洲中文久久久精品无码| 国产亚洲欧洲综合5388 | 天天躁日日躁狠狠躁一区 | 午夜毛片不卡高清免费看| 国产成人综合久久精品免费| 久久香港三级台湾三级播放| 成人日韩熟女高清视频一区| 国产做a爰片久久毛片a片| 国产免费不卡午夜福利在线| 亚洲七七久久桃花影院| 啦啦啦www播放日本观看| 亚洲中文波霸中文字幕| 国产免费不卡av在线播放| 2019久久久高清456| 精品视频一区二区三三区四区| 亚洲在av极品无码天堂| 国产 制服丝袜 动漫在线| 精品国产女主播在线观看 | 国产又色又刺激高潮视频| 特级黄www欧美水蜜桃视频| 西西人体大胆瓣开下部自慰| 久久97国产超碰青草| 国产精品热久久无码av| 免费无码一区二区三区a片18| 无码夜色一区二区三区| 在线亚洲精品国产二区图片欧美| 国产99久久亚洲综合精品西瓜tv| 亚洲三级高清免费| 99热都是精品久久久久久| 国产亚洲欧美日韩在线三区| 男人吃奶摸下挵进去啪啪软件| 精品自拍亚洲一区在线| 亚洲依依成人综合网址| 国产欧美va欧美va在线| 日产精品卡二卡三卡四卡乱码视频 | 欧美色欧美亚洲高清在线视频| 精品国内综合一区二区| 精品国际久久久久999波多野| 丰满爆乳在线播放| www一区二区乱码www| 中无码人妻丰满熟妇啪啪| 精品av天堂毛片久久久| 国产成人拍拍拍高潮尖叫| 2020精品国产午夜福利在线观看| 国产精品福利自产拍在线观看| 亚洲中文字幕在线无码一区二区 | 奇米影视888欧美在线观看| 亚洲国产成人久久一区| 熟妇人妻午夜寂寞影院| 久久精品国产99久久香蕉| 国产精品自在自线视频| 无码精品久久久久久人妻中字| 国产成人无遮挡免费视频| 中文无码人妻影音先锋| 国内精品自国内精品自线| 亚洲日韩中文字幕在线不卡最新| 久久精品国产一区二区无码| 国产一区二区三区精品av| 久久精品国产首页027007| 亚洲高潮喷水无码av电影| 在线精品亚洲一区二区动态图| 野花香社区在线观看| 精品久久久久久中文字幕无码vr| 国产免费无码av在线观看| 久久精品人人槡人妻人| 欧美videos另类粗暴| 色综合久久天天综合| 日日天干夜夜人人添| 水蜜桃亚洲精品一区二区| 久久强奷乱码老熟女网站| 国产成人一区二区三区视频免费| 国产办公室无码视频在线观看 | 亚洲精品无码久久久久av老牛| 18女下面流水不遮图 | 国产粉嫩高中无套进入| 国内精品久久久久影院网站| 伊人中文字幕无码专区| 久久伊人精品青青草原vr| 久久精品国产一区二区无码| 久久精品一本到99热免费| 狼人亚洲国内精品自在线| 精品人妻中文av一区二区三区 | 亚洲爆乳中文字幕无码专区网站| 精品国内自产拍在线播放观看 | 国产精品亚洲mnbav网站| 国产精品视频一区国模私拍 | 国产乱妇乱子在线视频| 国产丝袜在线精品丝袜| 亚洲欧美另类成人综合图片| 国产精品va尤物在线观看蜜芽| 精品第一国产综合精品蜜芽| 亚洲精品中文字幕久久久久| 无码一卡二卡三卡四卡| 成年在线网站免费观看无广告| 亚洲真人无码永久在线观看| 国产熟睡乱子伦午夜视频| 国产成人亚洲日韩欧美久久| 狠狠亚洲色一日本高清色| 天天爽亚洲中文字幕| 欧美亚洲日本国产黑白配| 成人国产片视频在线观看| 国产精品视频一区国模私拍 | 亚洲国产韩国欧美在线| 亚洲精品国产一区二区三| 亚洲精品久久久久999666| 国产精品人妻久久毛片| 2022国产在线无码精品| 亲胸揉屁股膜下刺激视频免费网站| 欧美成aⅴ人在线视频| av无码国产在线观看岛国| 无码av人片在线观看天堂| 久久97国产超碰青草| 亚洲国产成人精品福利在线观看| 色综合久久中文字幕有码| 久久国产劲暴∨内射| 毛片大全真人在线| 一边吃奶一边添p好爽故事| 人妻丝袜中文无码av影音先锋 | 浴室人妻的情欲hd三级| 亚洲欧美熟妇自拍色综合图片| 中文乱码人妻系列一区| 亚洲国产初高中女| 欧美va亚洲va在线观看日本| 中文字幕无码专区人妻制服| 日日噜噜大屁股熟妇| 亚洲狠狠色丁香婷婷综合| 五月天久久久噜噜噜久久| 国产亚洲产品影市在线产品| 非洲黑人性xxxx精品| 亚洲国产欧美国产第一区| 午夜福利影院私人爽爽| 人妻性奴波多野结衣无码| 久久精品亚洲成在人线av麻豆 | 久久国产高潮流白浆免费观看| 国产精品日本亚洲欧美| 成人无码免费视频在线播| av无码国产在线看免费网站 | 一道本在线伊人蕉无码| 国产欧美日韩一区2区| 日韩精品免费一线在线观看| 日产精品卡二卡三卡四卡乱码视频 | 成人精品一区二区三区电影免费| 免费无码一区二区三区a片18| 久久久久久无码日韩欧美| 人妻丝袜无码专区视频网站| 亚洲中文字幕aⅴ天堂| 免费一区二区三区成人免费视频| 中日精品无码一本二本三本| 性刺激的大陆三级视频| 国产女厕偷窥系列在线视频| 性刺激的大陆三级视频| 国产放荡av剧情演绎麻豆| 少妇人妻挤奶水中文视频毛片| 国产乱人伦偷精品视频下| 日本高清色倩视频在线观看| 亚洲成在人线av品善网好看| 久久久久国色av免费观看| 无码免费午夜福利片在线| 老头边吃奶边弄进去呻吟| 亚洲欧美日韩中文加勒比| 色欲久久九色一区二区三区| 97se狠狠狠狼鲁亚洲综合网| 国产成av人片在线观看无码| 亚洲午夜无码久久久久蜜臀av| 女人被狂爆到高潮免费视频 | 国产自在自线午夜精品视频| 国产乱人伦偷精品视频下| 狠狠躁夜夜躁人人爽天天开心婷婷| 99精品丰满人妻无码a片| 国产爆乳无码视频在线观看| 伊人久在线观看视频| 人人综合亚洲无线码另类 | 亚洲国产精品无码中文字满| 超碰aⅴ人人做人人爽欧美| 亚洲欧美综合区自拍另类| 中文 在线 日韩 亚洲 欧美| 日韩人妻ol丝袜av一二区| 无码超级大爆乳在线播放| 亚洲国产成人精品无码区一本| 高清性欧美暴力猛交| 成人国产精品日本在线观看| 久久精品亚洲精品无码白云tv| 欧美特黄特色三级视频在线观看 | 久久青青草原av免费观看| 免费国产va在线观看| 美国人性欧美xxxx| 老色鬼在线精品视频| 亚洲第一页综合图片自拍| 人妻出差精油按摩被中出| 中文无码不卡人妻在线看| 天天鲁在视频在线观看| 高潮射精日本韩国在线播放| 成人免费视频无码专区| 亚洲人成无码网www电影榴莲 | 亚洲免费观看在线美女视频| 国产成人av性色在线影院色戒| 一本一道波多野结衣一区| 色先锋av影音先锋在线| 乱成熟女人在线视频| 亚洲中文字幕av无码专区| 久99久精品免费视频热| 无码毛片内射白浆视频| 亚洲欧洲国产成人综合在线观看| 国产乱人伦av在线a麻豆| 国产精品美女久久久9999| 亚洲国产精品隔壁老王 |